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Question

• In the absence of GPS and inertial navigation instruments, we ask to what extent can 

machine-learning models leverage magnetic anomaly readings to accurately determine 

an aircraft’s longitude and latitude.

• We consider the cold-start variant of this problem: the aircraft’s initial position is unknown.

Introduction

• Aerial navigation without GPS is challenging - most approaches fail in various conditions.

• Magnetic navigation (MagNav) can be used over oceans, in poor weather conditions, and 

is difficult for adversaries to jam.

• We seek to expand the literature by adding a machine-learning approach.

• We assume ideal conditions, such as straight flight paths and constant altitude; even 

under perfect conditions it is unclear if machine-learning performs well.

• We investigated the MLP, LSTM, and 1D CNN architectures.

• This work was conducted at NOAA’s David Skaggs Research Center in Boulder, CO.

Prediction

• Over three regions that span 3 longitude and 3 latitude lines, we find that a machine-learning 

model is capable of learning the profile space and producing position predictions within several 

kilometers of the true position.

• The LSTM and CNN models appear most promising, as they are designed to take advantage of 

the temporal and spatial relationship between magnetic measurements.

• With noisy measurements, we suspect that the models will still be able to make predictions that 

are typically within several kilometers of the true position.

• This work was possible because of the staff of the Cooperative Institute for Research in 

Environmental Science (CIRES), NOAA, and funding from the NOAA Ernest F. Hollings 

Scholarship. Thank you to Dr. Nair and Dr. Saltus for their invaluable guidance.

Procedure

• 32 profiles are drawn from each sampled point in the cropped EMAG2 (Earth Magnetic Anomaly 

Grid 2-arc-minute resolution, Meyer et al., 2017) region. These profiles are straight paths at an 

altitude of 4 kilometers from sea-level.

• Training (80% of dataset), validation (10% of dataset), and test (10% of dataset) sets are 

generated.

• The machine-learning models are trained on the training data and evaluated on the validation 

data. The best model is evaluated on the test data at the end.

• To account for noisy measurements, the above process is repeated. The exception is that the 

profiles are corrupted by Gaussian noise with standard deviations ranging from [1, 3.5].

Results

• EU1 region: MAE loss 0.042, or ~2.9 mi error in position on average.

• Taiwan region: MAE loss 0.10, or ~6.8 mi error in position on average.

• West Coast region: MAE loss 0.18, or ~10.5 mi error in position on average.

• EU2 region: MAE loss 0.07, or ~5.5 mi error in position on average.

• Recall: the map resolution is 2.5 miles!

• To assess uncertainty propagation in a neural network model for the Taiwan Strait, we 

introduced a Monte Carlo simulation approach. Starting with a trained model, we 

generated magnetic profiles by adding Gaussian noise (mean = 0, std = σ, the map's 

error in nT) to the original profile. 

• Predictions from these noisy profiles were compared to true locations, and the spread 

(standard deviation) of the errors, measured in kilometers, quantified the propagated 

error from the magnetic map. 

• Extending this method to multiple random locations further characterizes spatial 

variability in uncertainty, providing a robust framework for error analysis in geophysical 

applications.

• EU region: EMAG2 STD Map Error of 209 nT. Spread = 15.7634 nT

• Taiwan region: EMAG2 STD Map error of 212 nT. Spread = 17.0731 nT

• West Coast region: EMAG2 STD Map error of 33 nT. Spread = 3.4671 nT

Conclusion

• 1D CNNs show promise to tackle the “cold-start” magnetic navigation challenge.

• Future work involves handling noisy measurements.

• Other questions include probing what path length is necessary for accurate 

predictions.

• A main factor in accuracy may be model capacity, given an adequate amount of 

profiles are present.
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